
RESTful Web Services and HTTP: Standards and Sources
Comments and suggestions: Colin Jaccino <colin@restful.ws>Find this document at: https://restful.ws version 2021.03.23-00A thoroughly linked reference for producers of articulate, RESTful web services and API portfolios

HTTP Semantics

HTTP Methods: Expressing Client Intent Toward Resources

REST’s Foundations

GET /posters/reference?current=true
Host: restful.ws
Authorization: BEARER YN6Y8U9D89zEQTJTb2fJmHST
Accept: application/pdf;q=0.8, text/html

HTTP Request

The REST concept preceded standardization of the World Wide Web.
The style was designed to enable a scalable, distributed, network of hy-
permedia resources.

Fielding and team developed and used the REST concept as a way to test
choices being made as HTTP was formalized. Thus, HTTP was made for
REST. REST does not require HTTP, but HTTP is the most well-known
use of the architecture style.

HTTP is flexible, making it possible to violate REST’s constraints. When
Web Services do so, they become non-RESTful and benefit from fewer of
the advantages REST provides.

Designers of RESTful Web Services and APIs should be informed of
REST’s constraints, trade-offs, and costs of deviating.

rfc7231 The client’s intent (GET) and URI
rfc7230 The authority or origin host for the resource

rfc6750, rfc7235 Client Authorization
rfc7231 Client’s acceptable media types in the response

HTTP Response

200 OK
Content-Type: application/pdf
Content-Length: 823402
Date: Mon, 15 Mar 2021 22:31:44 GMT
etag: “9cc9fac6dc7336979fb96b64f76c0d06”
via: 1.1 849381c36-cdn.example.com

(abbreviated) FbzWUdxuFdtFukf5KCNsWJwYRtBEDp1im-
SP+fJhcy5BXOVcN3Ey0GMbUmJuuTXPCOT1EPw1V5vURqObY...

rfc7231 The status of the response.
rfc7231 The media type of the payload
rfc7230 The size of the payload in bytes

rfc7231 The date and time of message origination
 rfc7232 Entity tag (etag) opaque validator

rfc7230 Via indicating intermediate recipients

 rfc7230 The payload or message body

Uniform Resource Identifier (URI)

https://restful.ws/posters/reference?current=true#timeline
scheme authority path query fragment

•	 Client-Server
Separation of concerns; client/server independence

•	 Stateless
Client state cannot be stored on the server
Resource and client application state are independent

•	 Cache
Improves network efficiency

•	 Uniform	Interface
Four constraints define RESTful uniform interface
Enables component decoupling

•	 Layered	System
Narrowly-defined, uncoupled layers enable Internet scale

•	 Code-on-Demand
Flexibility. Reduces client pre-implementation burden

Legend
Safe

Idempotent

rfc5789 Source Callout; Usually for non-core sources
Safe HTTP Method; will make no change
Idempotent HTTP Method; change only for first request

IANA Registry Indicates a relevant IANA registry
IETF Supplement A relevent supplemental IETF Source

Identifying Resources
Identify important things with Uniform Resource Identifiers, or	URIs. URIs make them addressable. URIs come in many
forms. Two special kinds of URIs are Uniform Resource Names, URNs, which name things, and Uniform Resource Loca-
tors, URL, which lead us to a place to interact with the resource.

REST prescribes that clients interact with resources by passing representations between Client and Server. To live
clients receiving URIs should treat them opaque, not inferring meaning from path elements; true RESTful clients rely on
hypermedia, not URI structure. Nevertheless, great APIs often have a consistent, well-concieved URI plan. If adoption
is a goal, a more consumable URI plan can improve developer experience and first impressions during API selection.

rfc3986 Uniform Resource Identifier (URI): Generic Syntax
rfc3987 Internationalized Resource Identifiers (IRIs)
rfc8615 Uniform Resource Names (URN)

• Every URI path element is meaningful, identifies something
• URI scheme should reflect an underlying resource model
• URIs benefit from hierarchical organization
• Consider URI planning at the portfolio level

Oaxaca Weather
Report

Resource

URI

Representation

https://weather.example.com/oaxaca

Metadata:
Content-Type: application/json

Data:
{
 “title”: “5 Day Forecast for Oaxaca”,
 ...
}

Identifies

Represe
nts

Adapted from W3C: Architecture of the World Wide Web, Volume One (https://www.w3.org/TR/webarch/)

Key REST Terms and Relationships

•	 Identification	of	Resources
Resource Identification: The key abstraction of information in REST

•	 Manipulation	of	Resources	through	Representations
Representations capture current or intended state.
Clients indicate intent toward a resource

•	 Self-descriptive	Messages
Interactions stateless between messages
Standard methods and media types provide semantics
Responses explicitly indicate cacheability

•	 Hypermedia	as	the	Engine	of	Application	State	(HATEOAS)
Application state belongs to client. Resource state belongs to server.
Links in representations and metadata offer possible interactions
Client application state influenced by interactions with resources
Client state never stored on server.

Fielding’s Dissertation (2000)
Architectural Styles and the Design of Network-based Software Architectures
REST’s formal introduction. The paper not only defines REST, but shows
how it is derived from principles as an architectural style.

Fielding’s ISCE Paper (2000)
Principled Design of the Modern Web Architecture
A restatement of Fielding’s dissertation; packaged more accessibly

W3C: Architecture of the World Wide Web, Volume One (2004)
Significant contribution to the nature of resources, URIs, data formats.

Fielding et al: Retrospective on REST (2017)
Reflections on the REST Architectural Style and “Principled Design of the Modern Web Architecture”
Review of the 2000 ISCE paper, as well as successes and challenges for
REST as an architecture style.

6 REST Constraints Four Uniform Interface Constraints REST Data Elements

REST is about resources.

Many designers inadequately recognize that any RESTful
service is organized around resources. While a URI can
address anything, what is addressed must still be a thing.
URI elements whose meaning is to do something, rather
than be something, often indicate non-RESTfulness.

As Leonard Richardson presented and Martin Fowler
elaborated on in the Richardson Maturity Model, REST
web services have a set of traits.

1. Resource Orientation in their URIs
2. Faithful use of HTTP Methods
3. Hypermedia Controls

Fielding has stated that without hypertext or hypermedia,
the service is not RESTful. Other styles include remote
procedure call (RPC), plain-old-XML (POX) or (POJ),
SOAP and GraphQL.

Resource Oriented Architecture (ROA)

Still in development, the IETF’s HTTP Semantics draft is the
single most informative document on the use of HTTP. HTTP
Semantics applies to HTTP/1.1 and /2, web sites and APIs.

HTTP Semantics covers:
• resources and resource identification
• representations and content
• expression of intent via HTTP Methods
• the meanings of the standard HTTP Status Codes
• headers and trailers
• authorization and security

Define your organization’s web API and portfolio standards us-
ing this semantics draft or its authoritative predecessors.

draft-ietf-httpbis-semantics
rfc2818 HTTP Over TLS
rfc7230 HTTP/1.1 Message Syntax and Routing (*)

The Semantics Draft will replace:

rfc7231 HTTP/1.1 Semantics and Content
rfc7232 HTTP/1.1 Conditional Requests
rfc7233 HTTP/1.1 Range Requests
rfc7235 HTTP/1.1 Authentication
rfc7238 HTTP Status Code 308 (Permanent Redirect)
rfc7615 HTTP Authentication-Info and Proxy-

Authentication-Info Response Headers
rfc7694 HTTP Client-Initiated Content-Encoding

HTTP Response Status Codes
1xx	Informational

GET
HEAD
POST
PUT

DELETE
OPTIONS
CONNECT

TRACE
rfc5789 PATCH

Request a Representation
Request GET Metadata without Representation
Request Processing of Representation Using Resource’s Semantics
Create/Replace Target Resource State using Provided Representation
Remove Association between URI and Resource
Request Communication Options for Resource
Create Tunnel between Client and Target
Request Loop-back of Request Message
Partial Update a Resource Representation

400
4xx	Client	Error

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
422
426
428
429

431

resource
resource identifier

resource metadata

representation

representation metadata

control data

Conceptual target of a URI or reference
Provides a resource name or distinguishing ID. URI, URN, URL
Having an identifier makes a resource addressible as the subject of
a RESTful interaction
Information about a resource. Alternative URIs, the authoritative or
canonical URI
data composed as defined by a media type that conveys a resource
in a given state, often the current or desired state
information about a representation. media type, time generated,
entity tag, etc
Information governing interpretation or processing of a request or
response

Timeline
1989

1994

Conception	of	the	World	Wide	Web
Tim Berners-Lee invents the World Wide Web, providing uniform resource ad-
dressing (URIs), a hypertext document format (HTML), and a protocol for distrib-
uting hypertext documents (HTTP). Early implementations were available in 1991,
and within a few years, the Web becomes the Internet’s primary application.

World	Wide	Web	Consortium	(W3C)	Founded

1996 Initial	Specification.		rfc1945:	HTTP/1.0

1997 rfc2068:	HTTP/1.1	
Per the 2017 Reflections paper, REST was “born as a byproduct of the collabo-
ration between Fielding and Nielsen while working on the HTTP specifications,
pruning HTTP/1.0 to the essential bits and evaluating various ideas... for a future
HTTP/1.1”.

1999 rfc2616:	HTTP/1.1	Update
A relatively minor revision, rfc2616 provided the HTTP standard for fifteen years.
Though the document did not mention REST, the terminology for resource, repre-
sentation, naming (URIs) articulate a resource-oriented architecture.

2000 Coining	REST:	Fielding’s	Dissertation
Architectural Styles and the Design of Network-based Software Architectures,
defined REST as an architectural style composed composed of constraints that
would enable a scalable, distributed hypermedia network.

Principled	Design	of	the	Modern	Web	Architecture
A reiteration of much of Fielding’s work presented via the International Confer-
ence on Software Engineering (ISCE). Provided additional articulation of REST
and drove additional attention to the architectural style.

2008 Untangled:	REST	APIs	must	be	Hypertext-driven
In a high profile critique of a non-RESTful web service, Roy Fielding clarifies nu-
merous topics on REST, both in his blog article and on the subsequent Q&A.

2004 W3C:	Architecture	of	the	World	Wide	Web,	Volume	One
The W3C’s recommendation for Web Architecture provided substantial depth on
the treatment Internet resources, from their identification (URIs), to interaction,
and representation. A significant step forward in guidance for practical web ser-
vice design.

Richardson	Maturity	Model
Following the release of his book, “RESTful Web Services”, Leonard Richardson
presents the “Maturity Heuristic” at QCon 2008. His ideas, popularly known as
Richard Maturity Model, spread quickly as an easy way to measure a Web Ser-
vice’s maturity relative to key RESTful constraints.

2014 HTTP/1.1	Update	(rfc7230-7235)	
Under a new working group, httpbis, again led by Fielding, the IETF publishes a
suite of standards covering numerous aspects of HTTP at much greater depth
than the standard it replaced, rfc2616. The HTTP Semantics specification, rfc7231,
establishes REST and resource orientation as HTTP’s primary paradigm.

2017 Reflections	on	the	REST	Architectural	Style
With two decades of experience with REST and the Web’s evolution, Fielding, Tay-
lor, et al revisit early RESTful concepts, unanticipated challenges, and key lessons
in the paper “Reflections on the REST Architectural Style and “Principled Design
of the Modern Web Architecture”.

HTTPbis	and	Ongoing	Standards	Development
The IETF HTTPbis working group continues to update HTTP standards. Current
work is expected to more clearly separate semantics and syntax. Semantics will
be common across different versions of the transports, HTTP/1.1, HTTP/2, and the
anticipated HTTP/3 based on QUIC.

Future

Defining and Representing Resources

Representations offer the state of a resource using one or more media type. How might the resource be represented? Structured data formats,
such as JSON or XML, are common for APIs. Image formats can depict physical or rendered states. Audio formats might represent a song, speech,
or story. HTML for web pages. The IANA Media Types registry provides standardized media types. These media types will define how the re-
source is represented as client and server trade its current and desired states. A rich web service may support many media types for a resource.

Before you can represent it, you must first understand the resource. What is it? What are its attributes? What can it do, and what can be done to
it? When you model your resource, you create an abstract concept that governs its interactions, related resources, and representations. In some
cases, UML Class Diagrams may be an appropriate way to define a resource’s attributes, possible interactions, and relationships to other resources.

Model the Resource

Choose Representation Format(s)

Define Schema
Many APIs use a standard structured format, such as JSON (rfc8259), for representations.
These media types provide the client what it needs to validate the syntax of the represen-
tation. They do not provide ontology or semantics. The designer must define a schema, a
concrete description of how to represent the resource using a chosen format. Draw from
your modeling work and consider how that schema will represent your resource through
the interactions your service will enable.

Use JSON Schema to specify JSON representations. You might use OpenAPI 3.0 to define
your resource representations and HTTP methods together. With OpenAPI 3.1 adopting JSON
Schema, JSON Schema has become even more useful..

Consider defining your own media types to provide
both semantics and syntax together.

Just	Syntax
application/json

Semantics	and	Syntax
application/problem+json

rfc6838 Media Type Specification And Registration
rfc6839 Additional Media Type Structured Syntax Suffixes
rfc7303 XML Media Types

Define Resource Interactions

URI Template Archetype Representation GET PUT POST DELETE HEAD OPTIONS

/cars collection application/json
A CarsCollection object

Get representation
of a Collection

Create Instance
OR Process

Delete the
collection

Get representation
metadata

Get interaction
options

/cars/{car-id} instance application/json
A Car object

Get representation
of a car

Update a car’s
representation

Process by
Resource Semantics

Delete car from
the collection

Get representation
metadata

Get interaction
options

/cars/{car-id}/honk controller No representation Honk: Process by
Resource Semantics

Get representation
metadata

Get interaction
options

Common Resource Archetypes

Instance
Collection

Store
Controller

An individual thing; often a document
A server-managed group of like things
A client-managed group of things
A sub-resource providing a method

A resource’s model provides its interactions, what it can do and what can be done to it.

Using an HTTP method and the resource’s URI can provide the bulk of semantics. The
media type provides a representation or desired change to the representation. In some
cases, such as HTTP’s POST method, the client can request an interaction to occur ac-
cording to the media type’s semantics.

Sufficiently complex resource may have sub-resources to enable addressable interactions
via POST for whens HTTPs methods and POST toward the resource itself are inadequate.

Resource archtypes help guide common interactions
and semantics for common resource types. These
may help inform, but do not constrain, modeling for
resources or an API.

URI and Resource Plan: Typical REST Semantics

Hypermedia: Application State Managed through Links

•	 Linking	for	Web	Pages: Web pages can use use anchor
hrefs, image links, and full-fledged Link header tags.

•	 Linking	via	Header: The Web Linking (rfc8288) stan-
dard provides a rich link description format thtat may be
used in the Link header. This makes linking possible for
formats, including pictures, abitrary files, and structured
formats that do not have support for the feature.

•	 Linking	via	JSON	Payload: JSON Hyper-Schema, part
of in-progress JSON Schema work, will formalize links in
JSON aligned to IETF’s Web Linking.

• OpenAPI 3 supports links semantically. Presenting the
links in headers and representations is up to the API
designer.

Linking via hypermedia is core constraint of REST. The client and developer
should not need a reference to the web service’s functionality, since the service
provides sufficient information about the resource and opportunities for interac-
tion via representations and links. From the perspective of REST, Web APIs are
not different from the Web viewed experienced through browsers.

Early on, structured object formats had no way to support linking the way HTML
did. As time has gone on, numerous methods have emerged.

Common	Media	Types	for	Web	Pages
text/html, application/javascript, image/*, text/css

Common	Media	Types	in	APIs
application/xml, application/json
Custom formats with +xml and +json suffixes

Securing and Managing Access

OAuth2 is being simplified. See drafts for OAuth 2.1, OAuth 2 Best Practices and WG related.
When designing Authorization, be sure to consider consider the following:
•	 The	Authorized	Party: Who or what will be authorized to use it? What is it that has the creden-

tials? A person? A client app? A device?
•	 Roles	and	Entitlements: What differences will there be in what a client can do?
•	 Implementation: Where is authorization functionality enforced?

Identity

Security
More facets of security for Web Services than can be accounted for. This section provides issues, terms.
• Protecting confidentiality,integrity of message and channel: TLS, MTLS, JWT and message signing
• Defending against abuse patterns: CORS, Reverse proxies and API Gateways, Input validation, object

schema validation, quotas and throttling, OWASP Top Ten
• Authorization and Policy: OAuth scopes, OpenID Connect identity tokens, JWT, XACML

OAuth2 & OpenID Connect
rfc6749 The OAuth 2.0 Authorization Framework
rfc6750 OAuth 2.0 Bearer Token Usage
rfc6819 OAuth 2.0 Threat Model, Security Considerations
rfc7009 OAuth 2.0 Token Revocation

JWT / JSON Object Signing & Encryption
rfc7165 Use Cases, Reqs for JSON Object Signing

and Encryption (JOSE)
rfc7515 JSON Web Signature (JWS)
rfc7516 JSON Web Encryption (JWE)
rfc7519 JSON Web Token (JWT)CORE OpenID Connect Core 1.0

DISC OpenID Connect Discovery 1.0
SESSION OpenID Connect Session Management 1.0

FORM OAuth 2.0 Form Post Response Mode

rfc7520 Examples of Protecting Content Using JSON
Object Signing and Encryption (JOSE)

Per Web Linking (rfc8288), a link is a connection between two
resources comprised of:

• a link	context - the representation providing the link
• a link	relation	type - the nature of the link relation
• a link	target
• optional target	attributes
•	 type - expected media type for
•	 hreflang - a language tag-
•	 media - a CSS @media value
•	 title - A human-readible label for the destination
•	 title* - Title with specified character set
• extended target attributes are allowed

HTTP	Link	Header
Link: <https://restful.ws/posters/reference>; rel=”canonical”; title=”REST-
ful Web Services and HTTP: Standards and Sources”; type=application/pdf

JSON	Hyper-Schema uses an external schema a client may use to validate the
payload and understand its links. With Hyper-Schema, the client can self-direct
subsequent requests and provide end user navigation.

JSON	Schema	and	Hyper-Schema
{
 “properties”: {
 “id”: { “type”: “integer” },
 “sandwich”: { “type”: “string” }
 },
 “links”: [{
 “rel”: “self”,
 “href”: “/sandwiches/{sandwich-id}”,
 “templatePointers”: {
 “sandwich-id”: “/id”
 }
}]}}

JSON	Representation
{
 “id”: 1,
 “sandwich”: “BLT”
}

Cacheable Cacheable HTTP Method

Cacheable

Cacheable

Cacheable

IANA OAuth Params

IANA JWT

JSON	Representation
{
 “id”: 442,
 “sandwich”: “PB&J”
}

Bad Request
Unauthorized
Payment Required
Forbidden
Not Found
Method Not Allowed
Not Acceptable
Proxy Authentication Required
Request Timeout
Conflict
Gone
Length Required
Precondition Failed
Payload Too Large
URI Too Long
Unsupported Media Type
Range Not Satisfiable
Expectation Failed
Unprocessable Payload rfc4918
Upgrade Required
Precondition Required rfc6585
Too Many Requests rfc6585
	 	 Throttling	and	Too	Busy
Request Header Fields Too Large rfc6585

General	client	request	error
Lacking	client	credentials

Refused	to	fulfill	request
No	representation	found

No	representation	for	Accept	header

Conflict	with	resource	current	state
Resource	no	longer	available

Missing	Content-Length	header

200 OK
2xx	Successful

201 Created
202 Accepted

203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Response

100 Continue
101 Switching Protocols

300 Multiple Choices
3xx	Redirection

301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect
308 Permanent Redirect

500 Internal Server Error
5xx	Server	Error

501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Success,	with	message	body
New	resource	created,	see	Location	header.
Processing	continuing.		Noncommital.
Asynchronous	response	may	follow

Success,	without	message	body

OpenAPI	3	Released
The OpenAPI Initiative made the first release of OpenAPI 3, an industry standard
for describing HTTP-based web services and APIs. Based on an earlier format,-
from SmartBear/Swagger, OpenAPI would become the most popular format for
design-first API development.

• Global naming leads to global network effects.
• Assign distinct URIs to distinct resources.
• A URI owner SHOULD NOT associate arbitrarily different URIs with the same resource. URI aliasing is useful, but

has downsides; use it sparingly.
• Agents making use of URIs SHOULD NOT attempt to infer properties of the referenced resource.

Key URI Advice from W3C Web Architecture

rfc8820 URI Design and Ownership

© 2020 Colin Jaccino

For API Producers

IANA HTTP Status Codes
IANA HTTP Media Types

IANA HTTP Methods

IANA HTTP Authentication Schemes

Server Response HeadersClient Request Headers

Authorization The user agent’s authentication information for the origin

Proxy-Authorization The user agent’s authentication information for the proxy

WWW-Authenticate
rfc6265 Authentication-Info

Proxy-Authenticate
rfc6265 Proxy-Authentication-Info

Information about the acceptance of credentials
Authentication challenge(s)

Proxy authentication challenge(s)
Proxy authentication challenge(s)

fetch X-Content-Type-Options
CSP2 Content-Security-Policy

rfc6797 Strict-Transport-Security
“nosniff”; prevents media type sniffing
User agent requirements for secure content processing

User agent security directives

If-Range

Cache-Control
If-Modified-Since

If-Unmodified-Since
If-Match

If-None-Match
Honor request for range if representation is unchanged

Directives for caching
Honor request if representation modified since
Honor request if representation not modified since
Honor request if representation exists or matches ETag
Honor request if no representation or matching ETag

Host
Connection

Upgrade
Via

The host authority for the target URI
Desired control options for current connection
Invitation to upgrade to another protocol
Indicates intermediaries and protocols

Accept Acceptable media type for representation
Content-Type Representation media type

Content-Length Payload size in bytes
Accept-Encoding Acceptable encodings for representation
Content-Encoding Representation encoding
Accept-Language Acceptable language for representation’s audience
Content-Language Representation’s language
Content-Location Alternate URI for the same representation
Transfer-Encoding Encoding applied to representation for transfer

Expect
Max-Forwards

TE
Trailer

Indication of behaviors required to handle message
Maximum number of forwards by intermediaries
Acceptable transfer encodings
Indiciates presence of trailers

From
Referrer

User-Agent

Email Address of person behind user agent
Resource URI providing target URI
User agent originating request

Range The portion of the representation requested

Controversial		Cookies	provide	a	non-REST	state	management	mechanism.		RESTfully	speaking,	this	architectural	anti-pattern	mixes	application	state	(client-side)	with	resource	state	(server).
Recommendation		Consider	the	Foundations	sources	addressing	REST	state	management	as	you	define	your	application’s	architecture.		See	5.3.3	in	Fielding’s	dissertation.

Age
Expires

Etag
Last-Modified

Cache-Control

Vary

rfc7239 Forwarded
Connection

Upgrade
Via

Content-Type
Content-Length

Content-Encoding

Content-Language
Content-Location
Transfer-Encoding

Date
Retry-After

Trailer

Allow
Server

Accept-Ranges
Content-Range

Location
rfc8288 Link

draft Deprecation
rfc8549 Sunset

Seconds since response generation or validation
Time after which response is considered stale
Entity tag; opaque validator unique to representation
Time the representation was most recently changed

Directives for caching

Elements of request that influenced representation

Desired control options for current connection
Indication of switched protocol
Indicates intermediaries and protocols

Provides information lost in proxying rfc7239

Representation media type
Payload size in bytes

Representation encoding

Representation’s language
vvate URI for the same representation
Encoding applied to representation for transfer

Advice to retry after given number of seconds

Indicates presence of trailers

Date of response message

Software information for origin server
Methods allowed for target resource

Indication resource supports range requests
Indication of the range of a partial representation

Links associated with the resource

Signals deprecation of a URI, supporting information

The location relevant to the resource

Expected date of resource becoming unresponsive

rfc6265 Cookie Client-stored state information provided by server rfc6265 Set-Cookie Set client-stored state information

Servers control the resources. Response headers describe the rep-
resentations or underlying resource, expected response handling,
direct client handling or processing, and elaborate on interactions
available for the resource.

Clients provide metadata to indicate message handling preferences,
identify the client or user, indicate response representation ac-
ceptability, describe the request’s payload, and enable validation of
representations for caching and conditional scenarios

Authentication and Authorization

Security and Privacy

Content Negotiation and Representation

Caching, Preconditions, and Validation

Message Routing

Control and Control Data

Context

Ranges

Resource Metadata

HTTP State (Cookies)

Headers

rfc5646 Language Tags

IANA Media Types

IANA Content Coding

IANA Media Types

IANA Content Coding

rfc5646 Language Tags

IANA Cache Directives IANA Cache Directives

IANA HTTP Authentication Schemes

IANA HTTP Authentication Schemes

Safe Idempotent

Safe Idempotent

Safe Idempotent

Safe Idempotent

Idempotent

Idempotent

IANA HTTP Status Codes

IANA Link Relations

IANA Link Relations

IANA Media Types IANA Media Types

IANA Forwarded

IANA HTTP Upgrade Tokens

IANA URI Schemes

https://www.linkedin.com/in/michael-colin-jaccino/
mailto:colin@restful.ws
https://restful.ws
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7230#section-5.4
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-7.1.1.2
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7230#section-5.7.1
https://tools.ietf.org/html/rfc7230#section-3.3
https://restful.ws/design/landscape?latest=true
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_2
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_3
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_4
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_5
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_6
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_1_7
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8615
https://restful.ws/design/landscape?latest=true
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_2
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_3_1
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_3_3
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
https://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
https://www.w3.org/TR/webarch/
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/28279b2a527287a42501f4c4122ef7c09b85a36f.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/28279b2a527287a42501f4c4122ef7c09b85a36f.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7238
https://tools.ietf.org/html/rfc7615
https://tools.ietf.org/html/rfc7694
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-4.3.6
https://tools.ietf.org/html/rfc7231#section-4.3.8
https://tools.ietf.org/html/rfc5789
https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7231#section-6.5.2
https://tools.ietf.org/html/rfc7231#section-6.5.3
https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc7231#section-6.5.5
https://tools.ietf.org/html/rfc7231#section-6.5.6
https://tools.ietf.org/html/rfc7235#section-3.2
https://tools.ietf.org/html/rfc7231#section-6.5.7
https://tools.ietf.org/html/rfc7231#section-6.5.8
https://tools.ietf.org/html/rfc7231#section-6.5.9
https://tools.ietf.org/html/rfc7231#section-6.5.10
https://tools.ietf.org/html/rfc7232#section-4.2
https://tools.ietf.org/html/rfc7231#section-6.5.11
https://tools.ietf.org/html/rfc7231#section-6.5.12
https://tools.ietf.org/html/rfc7231#section-6.5.13
https://tools.ietf.org/html/rfc7233#section-4.4
https://tools.ietf.org/html/rfc7231#section-6.5.14
https://tools.ietf.org/html/rfc4918#section-11.2
https://tools.ietf.org/html/rfc7231#section-6.5.15
https://tools.ietf.org/html/rfc6585#section-3
https://tools.ietf.org/html/rfc6585#section-4
https://tools.ietf.org/html/rfc6585#section-5
https://www.w3.org/
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2068
https://tools.ietf.org/html/rfc2616
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/webarch_icse2000.pdf
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://www.w3.org/TR/webarch/
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://tools.ietf.org/html/rfc7231
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/28279b2a527287a42501f4c4122ef7c09b85a36f.pdf
https://datatracker.ietf.org/wg/httpbis/charter/
https://tools.ietf.org/wg/httpbis/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.omg.org/spec/UML/
https://tools.ietf.org/html/rfc8259
http://json-schema.org/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.1.0.md
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc6839
https://tools.ietf.org/html/rfc7303
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8288
https://json-schema.org/draft/2019-09/json-schema-hypermedia.html
http://json-schema.org/specification.html
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/draft-ietf-oauth-v2-1-00
https://tools.ietf.org/html/draft-ietf-oauth-security-topics
https://tools.ietf.org/wg/oauth/
https://owasp.org/www-project-top-ten/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/rfc7009
https://tools.ietf.org/html/rfc7165
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7519
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://tools.ietf.org/html/rfc7520
https://tools.ietf.org/html/rfc8288
https://json-schema.org/draft/2019-09/json-schema-hypermedia.html
https://json-schema.org/draft/2019-09/json-schema-hypermedia.html
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://tools.ietf.org/html/rfc7231#section-4.2.3
https://www.iana.org/assignments/oauth-parameters/oauth-parameters.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.3.2
https://tools.ietf.org/html/rfc7231#section-6.3.3
https://tools.ietf.org/html/rfc7231#section-6.3.4
https://tools.ietf.org/html/rfc7231#section-6.3.5
https://tools.ietf.org/html/rfc7231#section-6.3.6
https://tools.ietf.org/html/rfc7233#section-4.1
https://tools.ietf.org/html/rfc7231#section-6.2.1
https://tools.ietf.org/html/rfc7231#section-6.2.2
https://tools.ietf.org/html/rfc7231#section-6.4.1
https://tools.ietf.org/html/rfc7231#section-6.4.2
https://tools.ietf.org/html/rfc7231#section-6.4.3
https://tools.ietf.org/html/rfc7231#section-6.4.4
https://tools.ietf.org/html/rfc7232#section-4.1
https://tools.ietf.org/html/rfc7231#section-6.4.5
https://tools.ietf.org/html/rfc7231#section-6.4.7
https://tools.ietf.org/html/rfc7538
https://tools.ietf.org/html/rfc7231#section-6.6.1
https://tools.ietf.org/html/rfc7231#section-6.6.2
https://tools.ietf.org/html/rfc7231#section-6.6.3
https://tools.ietf.org/html/rfc7231#section-6.6.4
https://tools.ietf.org/html/rfc7231#section-6.6.5
https://tools.ietf.org/html/rfc7231#section-6.6.6
https://github.com/OAI/OpenAPI-Specification/releases/tag/3.0.0
https://www.openapis.org/
https://www.w3.org/TR/webarch/
https://tools.ietf.org/html/rfc8820
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://tools.ietf.org/html/rfc7235#section-4.2
https://tools.ietf.org/html/rfc7235#section-4.4
https://tools.ietf.org/html/rfc7235#section-4.1
https://tools.ietf.org/html/rfc7615#section-3
https://tools.ietf.org/html/rfc7235#section-4.3
https://tools.ietf.org/html/rfc7615#section-4
https://fetch.spec.whatwg.org/#x-content-type-options-header
https://www.w3.org/TR/CSP2/
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc7233#section-3.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7232#section-3.3
https://tools.ietf.org/html/rfc7232#section-3.4
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2
https://tools.ietf.org/html/rfc7230#section-5.4
https://tools.ietf.org/html/rfc7230#section-6.1
https://tools.ietf.org/html/rfc7230#section-6.7
https://tools.ietf.org/html/rfc7230#section-5.7.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7231#section-5.3.4
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://tools.ietf.org/html/rfc7231#section-5.1.1
https://tools.ietf.org/html/rfc7231#section-5.1.2
https://tools.ietf.org/html/rfc7230#section-4.3
https://tools.ietf.org/html/rfc7230#section-4.4
https://tools.ietf.org/html/rfc7231#section-5.5.1
https://tools.ietf.org/html/rfc7231#section-5.5.2
https://tools.ietf.org/html/rfc7231#section-5.5.3
https://tools.ietf.org/html/rfc7233#section-3.1
https://tools.ietf.org/html/rfc7234#section-5.1
https://tools.ietf.org/html/rfc7234#section-5.3
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7232#section-2.2
https://tools.ietf.org/html/rfc7234#section-5.2
https://tools.ietf.org/html/rfc7231#section-7.1.4
https://tools.ietf.org/html/rfc7239
https://tools.ietf.org/html/rfc7230#section-6.1
https://tools.ietf.org/html/rfc7230#section-6.7
https://tools.ietf.org/html/rfc7230#section-5.7.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7230#section-3.3.1
https://tools.ietf.org/html/rfc7231#section-7.1.1.2
https://tools.ietf.org/html/rfc7231#section-7.1.3
https://tools.ietf.org/html/rfc7230#section-4.4
https://tools.ietf.org/html/rfc7231#section-7.4.1
https://tools.ietf.org/html/rfc7231#section-7.4.2
https://tools.ietf.org/html/rfc7233#section-2.3
https://tools.ietf.org/html/rfc7233#section-4.2
https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc8288
https://tools.ietf.org/id/draft-dalal-deprecation-header-03.html
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/rfc8594
https://tools.ietf.org/html/rfc6265#section-4.2
https://tools.ietf.org/html/rfc6265#section-4.1
https://tools.ietf.org/html/rfc5646
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
https://tools.ietf.org/html/rfc5646
https://www.iana.org/assignments/http-cache-directives/http-cache-directives.xhtml
https://www.iana.org/assignments/http-cache-directives/http-cache-directives.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.1
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/http-parameters/http-parameters.xhtml#forwarded
https://www.iana.org/assignments/http-upgrade-tokens/http-upgrade-tokens.xhtml
https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml

